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Synthesis of bifunctional cationic compound for gene delivery
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Abstract—Bifunctional cationic compound carrying trivalent galactosides as the cell targeting ligand and DAB-dendr-(NH2)8

(generation 2.0) as the DNA binding domain was synthesized for gene delivery to hepatocytes. DAB-dendr-(NH2)4 (generation
1.0) conjugated with a hydrocarbon chain was used as a scaffold for the attachment of three galactosides, while the other
hydrocarbon end was linked with DAB-dendr-(NH2)8 (generation 2.0) through a carbamate bond. This design provided an
effective entry for the synthesis of a polyamine compound having the cell targeting galactosyl ligand. Preliminary in vitro
transfection results demonstrated that the bifunctional cationic compound could effectively deliver the gene into HepG2 cells.
© 2001 Elsevier Science Ltd. All rights reserved.

The biological process where hepatic asialoglycoprotein
receptor can recognize and uptake b-D-galactoside ter-
minated glycoproteins is well known.1 Previous efforts
in understanding this recognition event through the
probes of artificial glycopeptides having galactoside
residues revealed that an enormous affinity enhance-
ment was achieved by multivalent binding.2 Recently,
the use of asialoglycoprotein receptor as a target
formed a basis for targeted gene delivery into hepato-
cytes.3 As part of our program dealing with cationic
compound-mediated gene delivery and cell targeting,4

here we combined the clustered galactosyl ligand and
poly(propylene imine) dendrimer onto a hydrocarbon
chain. We expected that this bifunctional cationic com-
pound could serve as a targetable DNA-vector which
could efficiently deliver the gene into hepatocytes
through an asialoglycoprotein receptor. The rationale
for our design is that the DAB-dendr-(NH2)8 should
spontaneously compact the DNA via an electrostatic
interaction, the galactose residues on the other end of
the molecule serve as the targeting ligand for hepato-

cytes, the hydrophobic chain in the middle provides a
sheath around the DNA that protects it against degra-
dation by the biological fluids.

b-D-galactose was converted to its hexyl spacer-armed
derivative containing an activated imidazole carboxylic
ester as the reactive end group (Scheme 1). The synthe-
sis was started by chemoselective removal of anomeric
acetyl group in pentaacetate b-D-galactose by hydrazine
acetate.5 Subsequent treatment of the resulting hemiac-
etal with large excess amounts of trichloroacetonitrile6

in the presence of a catalytic amount of DBU7 for 1.5
h at 0°C, gave the thermodynamically more stable
a-trichloroacetimidate in an excellent yield. AgOTf pro-
moted O-glycosylation gave the corresponding b-gly-
coside derivative 1 in 97% isolated yield.8 The
stereochemistry of compound 1 was confirmed by its 1H
NMR spectrum with the anomeric proton exhibiting a
doublet with a coupling constant of 7.9 Hz centered at
4.44 ppm. Desilylation of 1 with tetrabutylammonium
fluoride by a standard method released the primary

Scheme 1. Reagents and conditions: (a) NH2NH2–AcOH (1.1 equiv.), DMF, 60°C, 30 min, 100%; (b) CCl3CN–CH2Cl2 (1:4=v/v),
cat. DBU, 90%; (c) 4 A, MS, HO(CH2)6OTBDMS (0.5 equiv.), then AgOTf (0.3 equiv.), 0°C, 2 h, 97%; (d) Bu4NF (1.5 equiv.),
THF, rt, 12 h, 90%; (e) CDI (1.25 equiv.), DMAP (0.2 equiv.), CH2Cl2, rt, 1 h, 95%. DBU=1,8-diazabicyclo[5,4,0]undec-7-ene,
CDI=1,1%-carbonyldiimidazole, DMAP=4-(dimethylamino)pyridine.
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alcohol, which was activated with 1,1%-carbonyldiimida-
zole (CDI)9 under DMAP10 to afford the imidazole
carboxylic ester 2.11

Commercially available 1,12-diol was chosen as a
hydrophobic linker, since it has two hydroxyl function-
alities available for generating two carbamate bonds,
which could bridge the cell surface targeting ligand—
galactoside and the DNA binding domain—polyamine

(Scheme 2). Treatment of 1,12-diol with 0.5 equiv. of
TBDMSCl in the presence of imidazole afforded the
corresponding mono-TBDMS derivative. The primary
alcohol in the mono-TBDMS derivative was activated
with CDI in the presence of 4-(dimethylamino)pyridine
(DMAP) to give the imidazolide 3 in an excellent yield.
Compound 3 was treated with excess amounts of DAB-
dendr-(NH2)4 to give carbamate 4, the excess amounts
of unreacted DAB-dendr-(NH2)4 were removed by

Scheme 2. Reagents and conditions: (a) TBDMSCl (0.5 equiv.), imidazole (1 equiv.), DMF, 78%; (b) CDI (1.25 equiv.), DMAP
(0.2 equiv.), CH2Cl2, rt, 1 h. 90%; (c) DAB-dendr-(NH2)4 (4 equiv.), dry MeCN, DMAP (0.2 equiv.), rt, 1 h. 85%; (d) Compound
2 (3.5 equiv.), THF, DMAP, reflux, 6 h, 50%; (e) Bu4NF (1.5 equiv.), THF, rt, 18 h, 85%; (f) CDI (1.5 equiv.), DMAP (0.2
equiv.), CH2Cl2, rt, 2 h, 88%; (g) DAB-dendr-(NH2)8 (4 equiv.), THF, reflux, 1.5 h; (h) 0.04 M NaOMe–MeOH, rt, 2 h; then
Dowex 50WX4-100. ca. 70% for two steps.
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workup with 5% potassium hydroxide aqueous solu-
tion. At this stage, we used DAB-dendr-(NH2)4 (gen-
eration 1.0) as a potential scaffold to conjugate with
spaced galactoside and expected that the primary
amine in compound 4 could react with the terminal
activated galactoside 2 in an SN2 manner. Indeed,
when compound 4 was reacted with an excess amount
of imidazolide 2 in refluxing tetrahydrofuran (THF)
for 6 h, the clustered trisaccharide derivative 5 was
obtained in 50% separated yield.12 Exposure of clus-
tered trisaccharide silyl ether 5 to tetra-
butylammonium floride in THF slowly liberated the
primary alcohol, which was further activated with
CDI to give the imidazole carboxylic ester 6.13 Treat-
ment of 6 with excess amounts of DAB-dendr-(NH2)8

(generation 2.0) furnished the construction of the final
carbamate bond. Removal of excess amounts of unre-
acted DAB-dendr-(NH2)8 by careful workup with 5%
potassium hydroxide aqueous solution14 led to the
compound 7.15 Deprotection of peracetate in 7 was
achieved under Zemplén conditions. After neutraliza-
tion with acidic resin and concentration, the reaction
residues were dialyzed against water in a membrane
with molecular weight cut-off of 1000. Finally,
lyophilization of the dialyzed compound afforded the
desired product 8 in ca. 70% yield for the last two
steps.16

Transfection efficiency of 8 was initially tested in
HepG2 liver cells. Five nmol of compound 8 mixed
with 1 mg of pCMV-Luc plasmid DNA was used for
the transfection of HepG2 liver cells (5×104 cells per
well in a 48-well plate). Using a standard transfection
assay with luciferase as the reporter,17 we harvested
64 ng of luciferase protein per mg of extracted
proteins. These results demonstrated that the bifunc-
tional cationic compound 8 could effectively deliver a
gene into HepG2 cells.

In summary, we have developed an efficient route
toward the synthesis of bifunctional cationic com-
pound 8. DAB-dendr-(NH2)4 (generation 1.0) conju-
gated with a hydrocarbon chain was used as a
scaffold for the attachment of three galactosides,
while the other hydrocarbon end was linked with
DAB-dendr-(NH2)8 (generation 2.0) through a carba-
mate bond. This design provided an effective entry
for the synthesis of a polyamine compound having
the cell targeting galactosyl ligand. Preliminary in
vitro transfection results demonstrated that the
bifunctional cationic compound could effectively
deliver a gene into HepG2 cells. Application of this
compound for delivering a gene into the targeted cells
in vivo is now underway.
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11. Compound 2: 1H NMR (300 MHz, CDCl3) d 8.14 (s, 1H,
imidazole ring), 7.44 (s, 1H, imidazole ring), 7.08 (s, 1H,
imidazole ring), 5.39 (d, J=3.2 Hz, 1H, H-4), 5.20 (dd,
J=10.4, 8 Hz, 1H, H-2), 5.01 (dd, J=10.4, 3.4 Hz, 2H,
H-3), 4.45 (d, J=8 Hz, 1H, H-1), 4.41 (t, J=6.6 Hz, 2H,
CH2OCO), 4.20 (dd, J=11.2, 4.7 Hz, 1H, H-6a), 4.12
(dd, J=11.6, 6.9 Hz, 1H, H-6b), 3.90 (m, 2H, H-5 and
alkyl chain H-1%), 3.48 (m, 1H, alkyl chain H-1%), 2.15 (s,
3H, Ac), 2.05 (s, 6H, 2×Ac), 1.99 (s, 3H, Ac), 1.78 ( m,
2H, CH2), 1.60 (m, 2H, CH2), 1.42 (m, 4H, 2×CH2) ppm.

12. Compound 5: 1H NMR (300 MHz, CDCl3) d 5.51 (br,
4H, 4×NHCO2), 5.36 (d, J=3 Hz, 3H, H-4), 5.19 (dd,
J=10.4, 7.9 Hz, 3H, H-2), 4.99 (dd, J=10.5, 3.3 Hz, 3H,
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13. Compound 6: 1H NMR (300 MHz, CDCl3) d 8.13 (s, 1H,
imidazole ring), 7.43 (s, 1H, imidazole ring), 7.07 (s, 1H,
imidazole ring), 5.48 (br, 4H, 4×NHCO2), 5.39 (d, J=3
Hz, 3H, H-4), 5.19 (dd, J=10.4, 8 Hz, 3H, H-2), 4.98
(dd, J=10.4, 3.4 Hz, 3H, H-3), 4.45 (d, J=8 Hz, 3H,
H-1), 4.41 (t, J=6.6 Hz, 2H, CH2OCO), 4.18 (dd, J=
11.3, 6.7 Hz, 3H, H-6a), 4.12 (dd, J=11.3, 7 Hz, 3H,
H-6b), 4.02 (t, J=6.6 Hz, 8H, 4×CH2OCO), 3.92 (m, 6H,

H-5 and alkyl chain H-1%), 3.47 (m, 3H, alkyl chain H-1%),
3.20 (brm, 8H, 4×CH2NHCO), 2.50–2.35(m, 12H, 2×
N(CH2)3), 2.15 (s, 9H, 3×Ac), 2.07 (s, 18H, 6×Ac), 1.98
(s, 9H, 3×Ac), 1.70–1.50 (m, 24H, 12×CH2), 1.50–1.20
(m, 32H, 16×CH2) ppm.

14. When the reaction mixture diluted with 50 mL of chloro-
form and washed with saturated NaCl aqueous solution,
a formation of emulsions occurred. However, when the
organic layer was treated with 5% KOH aqueous solution
combined with 10 mL of methanol, a better phase separa-
tion was obtained.

15. Compound 7: 1H NMR (300 MHz, CDCl3) d 5.55 (br,
5H, 5×NHCO2), 5.33 (d, J=3 Hz, 3H, H-4), 5.14 (dd,
J=10.4, 8 Hz, 3H, H-2), 4.96 (dd, J=10.5, 3.3 Hz, 3H,
H-3), 4.40 (d, J=7.9 Hz, 3H, H-1), 4.10 (dd, J=11.1, 6.7
Hz, 3H, H-6a), 4.08 (dd, J=11.1, 6.6 Hz, 3H, H-6b), 3.96
(t, J=6.6 Hz, 10H, 5×CH2OCO), 3.85 (m, 6H, H-5 and
alkyl chain H-1%), 3.40 (m, 3H, alkyl chain H-1%), 3.20 (m,
10H, 5×CH2NHCO), 2.66 (t, J=7 Hz, 14H, 7×CH2NH2),
2.45–2.22 (m, 48H, 8×N(CH2)3), 2.09 (s, 9H, 3×Ac), 2.00
(s, 18H, 6×Ac), 1.93 (s, 9H, 3×Ac), 1.70–1.20 (m, 98H,
7×NH2 and 42×CH2) ppm.

16. Compound 8: 1H NMR (300 MHz, CD3OD) d 4.17 (d,
J=6.9 Hz, 3H, H-1), 3.98 (m, 10H, 5×CH2OCO), 3.90–
3.80 (m, 6H, alkyl chain H-1% and H-4), 3.70 (m, 6H,
H-6a and H-6b), 3.54–3.45 (m, 12H, H-2, H-3, H-5 and
alkyl chain H-1%), 3.15 (t, J=6.6 Hz, 10H, 5×
CH2NHCO2), 2.75 (m. 14H, 7×CH2NH2), 2.45 (m, 48H,
8×N(CH2)3), 170–1.20 (m, 84H, 42×CH2) ppm.

17. For detailed experimental procedure of in vitro transfec-
tion see: reference 4b.
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